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Steerable basis

A vector Y(x) = | Y/(x) | € K* with (basis) functions Y, € L,(X) is steerable if

Vet Y(8X) = p(8)Y(x),

KLXL

where g x denotes the action of G on X and p(g) € is a representation of G.



Example: Steerable basis on S : (circular harmonics)

Basis functions (for [ 2(Sl)); Y(a) = pila
Are steered by representations:  p,(0) = et
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Example: Steerable basis on S : (circular harmonics)

Let fla| W) = W Y(a)
Then we can steer/shift this function by transforming the weights w

fla—=0|w) = fla| p()w)
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Two dimensional rotation-steerable functions

[6

» The previous functions p,(0) = e''? are (irreducible) representations of SO(2)

Transitive action

Transitive action: An action ® : G X X — X such that

» The group SO(2) can also act on R?

Vixexdgec 1 X =80 X

* Though not transitively... SO(2) does ot ..

. It does act transitively on S though \

. Use polar coordinates R> 2 x < (r,a) € RT X S! to come up with a rotation-
steerable basis for [|_2(|R2)!



Two dimensional rotation-steerable functions

. Consider a function f(x) = f(r, @) in polar coordinates
X = (rcosa,rsinao)
» The action of SO(2) on R? in polar coords translates to

x—Rx o (r,a)w- (r,a+0)



Two dimensional rotation-steerable functions

. Consider a function f(x) = f(r, @) in polar coordinates

X = (rcosa,rsinaq)

» The action of SO(2) on R? in polar coords translates to
x—Rx o (r,a)w- (r,a+0)

* Then, functions are rotated simply by a shift in the angular axis

Z,00fx) =fRy'x) o ZLDfr,a)=fr,a-0)
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Two dimensional rotation-steerable functions

rcosa
Proof: Ryx = R (r “in a)

» Consider a function f(X) = f(r, a) in polar coordinates . (r(cos HCOSG_SmaSM)>

r(cos @ sin a + cos a sin 0)

X = (rcosa,rsina) _ <’”COS<9 + “>>
rsm(f + a)
» The action of SO(2) on R? in polar coords translates to kit (1)
- 10]0JOL)
h—

x—Rx o (r,a)w- (r,a+0)
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* Then, functions are rotated simply by a shift in the angular axis

Z,00fx) =fRy'x) o ZLDfr,a)=fr,a-0)

k(x|w) =k~ (r|w)kC(a|w)

\/ A function on S! 11!




Two dimensional rotation-steerable functions

e Consider polar-separable convolution kernel:

k(x| w) = k™ (r| w) k©(a|w),

(circular harmonics)
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(B-splines)

e with k© in an SO(2) steerable basis, and k~ in some radial basis:

kO(alw) = Z wY (@), e.g., with Y(a) = e''?
l

K2(r[w) = ) W,6h,(r)
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Two dimensional rotation-steerable functions

e Consider polar-separable convolution kernel:

k(x| w) = k™ (r| w) k©(a|w),

e with k© in an SO(2) steerable basis, and k~ in some radial basis:
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kO(alw) = Z wY (@), e.g., with Y(a) = e''®

K2(r[w) = ) W,6h,(r)

* Then we may as well write it as

k(x| w) = 2 Zw W, (r) Yi(@)
= 2 2 w. @, (r) Y (a) (“absorb” weights)

— Z wl(r) Y () with radius dependent weights Ww,(r) = 2 w, @, (1)

m

* Then such kernel is clearly rotation steerable!

k(R; x| W(r) = k(x| p(0)W(r))
14



Two dimensional rotation-steerable functions

e Consider polar-separable convolution kernel:
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kO(alw) = Z wY (@), e.g., with Y(a) = e''®

K2(r[w) = ) W,6h,(r)

* Then we may as well write it as

k(x| w) = 2 Zw W, (r) Yi(@)
= 2 2 w. @, (r) Y (a) (“absorb” weights)

— Z wl(r) Yl(a) with radius dependent weights vAvl(r) = m(l’)

£

* Then such kernel is clearly rotation steerable!

k(R; x| W(r) = k(x| p(0)W(r))

Or directly parametrize as w(r) = MLP(r|w) !
14
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Real (irreducible) representations

Y(R;1 X) = p(Rgl) Y(x)

cos@ sind

—siné cosf

cos 26 sin 26

—sin 260 cos 20

cos 3¢ sin 30

Pary ke 4™
Pary ke 4™

—sin 360 cos 36
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Real (irreducible) representations

The real basis functions Y(X) = (

cos(la)
sin(la)

teerable Us Ry = (coslf —sinlf
) are steerable using p;(Ry) (sin 19 cos i

)

- OIIT ZU  CUS LU

cos 36

—sin 360 cos 36

—

sin 36 »:
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Representing interesting convolution kernels in a steerable basis!

Exercise:

1. Tune the weights W until you get
something interesting.
2. Add more detall by increasing
maximum frequency!

L=1

k(x| w(r))

18
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Representing interesting convolution kernels in a steerable basis!

Exercise:
1. Tune the weights W until you get 3. Go crazy and steer it by
something interesting. transforming the weights!

2. Add more detall by increasing
maximum frequency!

L=1

k(x| W(r)) k(x| p(O)W(r))
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